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Abstract 
Frequency analysis of a functionally graded beam bonded by a 
piezoelectric layer is carried out by using the dynamic stiffness 
method. First, governing equations are conducted for FGM 
beam element with a piezoelectric layer based on the 
Timoshenko beam theory and power law of material grading. 
The established equations are solved to get frequency dependent 
shape functions that are employed then for constructing 
dynamic stiffness matrix of the beam element. Natural 
frequencies of an FGM beam with a piezoelectric layer 
representing a distributed sensor are examined in dependence 
upon the material properties and thickness of the piezoelectric 
layer 
Keywords: FGM Beam, Piezoelectric Material, Dynamic 
Stiffness Method. 

1. Introduction 

 Piezoelectric material has got more and more used for 
control of engineering structures [1-3] due to the property 
that couples its elastic evolution with electric field. 
Particularly, it is a specially prevailing device for 
structural health monitoring as both sensor and actuators 
[4-6].  

The authors of References [7,8] have shown that 
piezoelectric patch can be efficiently used also for 
repairing a notched or cracked beam. Since a typical 
property of the piezoelectric material is its undergoing at 
high frequency band, the frequency domain methods are 
most appropriate in modelling piezoelectric structures. 
Lee and his co-workers [9,10] and Park et al [11] have 
extended the spectral element method for composite 
beam with piezoelectric layers. Li and Shi studied free 
vibration of a functionally graded piezoelectric beam via 
state-space based differential quadrature [12].  

In this report, the dynamic stiffness method is 
developed for frequency analysis of functionally graded 
material (FGM) beam with piezoelectric layer. This is 
first effort of the authors to apply the piezoelectric 
material for health monitoring FGM structures. 

2. Governing equations 

2.1. Constitutive equations for base FGM beam 
 
 Suppose that FGM properties of the base beam are 
varying accordingly to the power law 

  
    

   (2.1) 
   

 
Fig.1. FGM beam with piezoelectric layer 

where E, G, ρ denote Young’s, shear modulus and mass 
density of the material respectively, the subscripts b and t 
indicate bottom and top material components and z is the 
ordinate measured from the central axis of the beam. 
Following Timoshenko beam theory, the constitutive 
equations are 
 
 ;  
 ;                    (2.2) 
  
               (2.3)             
 
where the index b at components in the deformable field 
now denote those of the base beam, the index 0 implies 
that is measured at the mid-plan of the beam. Using the 
equations strain energy of the base beam can be 
calculated as 
  

  
     

     

                                          (2.4) 
where 
   

                     (2.5) 

2.2. Constitutive equations for piezo-electric layer 
 

Let’s consider the piezoelectric layer as a Timoshenko 
beam element, so that constitutive equations can be 
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expressed as 
  
  
  
The piezoelectric material is described by  

  

                       (2.6) 
where ,  are elastic modulus, piezoelectric 
and dielectric constants respectively.  and  are 
electric field and displacement of the piezoelectric layer. 
Perfect bonding between the base beam and piezo-electric 
layer is represented by the conditions 

  
              (2.7) 
that yield 
   
                        (2.8) 
Therefore 
        (2.9) 
and 
  

 

 
(2.10) 

2.3. Equations of motion for FGM beam element with 
a piezoelectric layer 

 
 Using Hamilton’s principle, equations of motion of the 
electromechanical system are established as 

 
 + 
 +  
  
                  (2.11) 
where the following notations have been used   
 + ;  
  ; 
             (2.12) 
 + +  
 ;  
  
    .             (2.14) 
The resultant forces are determined for the beam as 
 ;  
                     (2.15) 
Obviously, in case of beam without piezoelectric layer all 

the constants , , , , , ,  become 
those of the host FGM beam 

, ,  (without asterisk 
superscript). 

3. Dynamic stiffness model 

3.1. General vibration mode shape 
 
 Seeking solution of Eq. (2.11) in the form 
  

 
                    (3.1) 

leads that equation to 
 

 
                                          (3.2) 
So that one obtains characteristic equation for seeking the 
wave number  as follows 

 
or 
                       (3.3) 
Let roots of Eq. (3.3) with respect to  be found in the 
form 

  
             (3.4) 

where  are roots of the cubic equation 
+c . Hence, so-called vibration mode 

shape 
 

can be expressed as 
  
           
  
          
  
    . 

                                         (3.5) 
where  

  

 .                               (3.6) 

3.2. Dynamic stiffness matrix 

 Using the shape functions (3.5), vector of nodal 
displacements , defined in Fig. 
2, can be calculated as 

                            (3.7) 
Where  and   
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                                         (3.9) 

  
    (3.8) 

 
Fig. 2. Nodal displacements and forces of a beam element 

Similarly, the internal forces 
  
  

=          (3.10) 
can be calculated at the nodes as 
                           (3.11) 
where  and 
  
    (3.12) 
The matrix  in Eq. (3.11) has the elements 
  
  ; 
 ;  
  
  ; 
   ;  
  
 ; 
 ; ; 
  
  
  
  ; 
 ; 
 ; 
  
  
  
 ; 
 ; 
 ; 
  
  
  
 ; 
 ; 
 .                   (3.13) 

 
Eliminating constant vector C from Eqs. (3.7) and (3.11) 
gives 
         (3.14) 
with matrix  that is acknowledged as the dynamic 
stiffness matrix of the beam element. 
For a structure composed off a number of such the beam 
elements, the total dynamic stiffness matrix is assembled 
from those of the component elements by 
                  (3.15) 

3.3. Modal analysis of FGM beam bonded by 
piezoelectric layer 

 
 Free vibration of a structure formulated by using the 
dynamic stiffness model is governed by solving the 
equation 

                           (3.16) 

where total vector of nodal displacements  is 
assembled also from the local vector  . Solution of 
Eq. (3.16) gives natural frequencies  
determined as positive roots of equation 

                           (3.17) 

and normalized solution  of equation 

                          (3.18) 

Therefore, mode shape corresponding to natural 
frequency  would be determined by 

 
4. Examples 

 Let’s consider an FGM beam of length L bonded by a 
piezoelectric layer along all the beam length as shown in 
Fig. 3. Note that if the beam is clamped at the ends, for 
which boundary conditions are 
 0 
then Eq. (3.7) leads to 

                               (4.1) 

The latter equation gives rise immediately the frequency 
equation for the beam 

                     (4.2) 

Numerical computation is carried out for FGM with 
following parameters 
 E1=390e9Pa; ρ1=3960kg/m3; µ1=0.25;  
 E2=210e9Pa; ρ2=7800 kg/m3; µ2=0.31; 
 L=1.0m; b=0.1m; h=L/10 
with varying volume distribution index n. The parameters 
of piezoelectric material are 
 H13=-7.70394e8; ρ=7750; C11=69.0084e9; 
 B33=7.38857e7; C55=21.0526e9. 
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Fig. 3. FGM beam with a piezoelectric patch 

Thickness of the piezoelectric layer varies from 0 
(without piezoelectric layer) to 0.1 (the beam thickness) 
and boundary conditions for the beam are clamped ends. 
Results of the computation are depicted in Table 1 and 
Fig. 4. 
Table 1. Variation of natural frequencies versus power 
law index n of FGM and thickness h of piezoelectric 
layer for clamped-clamped end beam 

n Freq. hp = 0 hp = 0.01 hp = 0.02 
 
 

0.1 
 

1 
2 
3 
4 
5 

10.8205 
27.7924 
50.3343 
56.3731 
76.5667 

10.2595 
26.3334 
47.6680 
52.3676 
72.4797 

9.9140 
25.3985 
45.8992 
49.1608 
69.6949 

 
 

0.2 

1 
2 
3 
4 
5 

10.2319 
26.2854 
47.6118 
53.5455 
72.4358 

9.7532 
25.0404 
45.3378 
50.0200 
68.9492 

9.4652 
24.2569 
43.8498 
47.1606 
66.5975 

 
 

0.5 

1 
2 
3 
4 
5 

9.1182 
23.4254 
42.4315 
48.0050 
64.5588 

8.7782 
22.5401 
40.8149 
45.3109 
62.0764 

8.5895 
22.0174 
39.8092 
43.0747 
60.4676 

 
 

1.0 

1 
2 
3 
4 
5 

8.2292 
21.1256 
38.2389 
43.1884 
58.1469 

7.9864 
20.4903 
37.0750 
41.1057 
56.3521 

7.8688 
20.1522 
36.4073 
39.3475 
55.2607 

 
 

2.0 

1 
2 
3 
4 
5 

7.5376 
19.3119 
34.8940 
38.9091 
52.9791 

7.3663 
18.8570 
34.0499 
37.2893 
51.6631 

7.3015 
18.6522 
33.6202 
35.9051 
50.9295 

 
 

5.0 

1 
2 
3 
4 
5 

6.9493 
17.7560 
32.0050 
35.0282 
48.4886 

6.8451 
17.4632 
31.4374 
33.7687 
47.5736 

6.8320 
17.3820 
31.2166 
32.6832 
47.1418 

 
 

10 

1 
2 
3 
4 
5 

6.6339 
16.9432 
30.5295 
33.3620 
46.2376 

6.5709 
16.7477 
30.1234 
32.2413 
45.5513 

6.5922 
16.7462 
30.0336 
31.2729 
45.3036 

 
Table 1. Variation of natural frequencies versus power 
law index n of FGM and thickness h of piezoelectric 

layer for clamped-clamped end beam 

n Freq. hp=0.05 hp=0.08 hp=0.1 
 
 
0.1 

1 
2 
3 
4 
5 

9.6862 
24.5118 
42.4221 
43.8183 
65.9328 

10.0951 
25.0041 
38.1190 
43.9338 
65.1768 

10.5041 
25.5356 
36.0326 
44.2979 
65.0498 

 
 
0.2 

1 
2 
3 
4 
5 

9.3367 
23.6387 
41.0480 
42.2748 
63.6249 

9.7948 
24.2734 
37.0744 
42.6621 
63.2950 

10.2236 
24.8692 
35.1281 
43.1463 
63.3530 

 
 
0.5 

1 
2 
3 
4 
5 

8.6362 
21.8717 
38.1419 
39.1248 
58.8860 

9.1808 
22.7578 
34.8241 
39.9972 
59.3243 

9.6429 
23.4656 
33.1659 
40.6970 
59.7221 

 
 
1.0 

1 
2 
3 
4 
5 

8.0408 
20.3397 
35.3747 
36.3465 
54.6515 

8.6423 
21.3910 
32.6293 
37.5453 
55.6204 

9.1229 
22.1673 
31.2342 
38.3877 
56.2574 

 
 
2.0 

1 
2 
3 
4 
5 

7.5627 
19.0653 
32.7219 
33.9690 
50.9504 

8.1945 
20.2000 
30.4779 
35.3399 
52.2180 

8.6783 
20.9988 
29.3231 
36.2473 
52.9881 

 
 
5.0 

1 
2 
3 
4 
5 

7.1817 
17.9958 
30.1578 
31.9003 
47.6508 

7.8352 
19.1716 
28.3557 
33.3536 
49.0759 

8.3128 
19.9596 
27.4216 
34.2684 
49.8996 

 
 
10 

1 
2 
3 
4 
5 

7.0083 
17.5053 
29.0126 
30.9497 
46.1361 

7.6850 
18.7226 
27.3954 
32.4704 
47.6676 

8.1632 
19.5086 
26.5562 
33.3916 
48.5185 

Observing the results given in Table 1 and graphs shown 
in Fig. 4 one can make the following notices:  
 Natural frequencies of FGM beam bonded with a 

piezoelectric layer decrease with growing volume 
fraction index n independently upon thickness of the 
piezoelectric layer;  

 Under growing thickness of piezoelectric layer from 
zero to thickness of the host beam, flexural vibration 
frequencies of the electro-mechanical system at first 
reduce to a minimum, then they get monotonically 
increasing. Curvature of the graphs at minimum value 
is increasing with reducing volume fraction index n. 
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 Longitudinal frequencies of the beam are all decreasing 
with growing thickness of piezoelectric layer regardless 
the index n. 

 

 
Fig. 4. Variation of fundamental frequency versus 

thickness of piezoelectric layer for clamped end FGM 
beam with n = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.  

The decrease and increase of natural frequency with 
growing thickness of piezoelectric layer can be explained 
as following: as well-known in the theory of vibration, 
natural frequency of a system is defined as ratio of its 
stiffness to mass. Therefore, frequency could be increasing 
or decreasing in dependence on whether the stiffness grow 
is more or less than that of the mass. Actually, as shown in 
Fig. 4, frequency of the beam bonded with piezoelectric 
layer is always less than that of beam without the bonded 
layer (when n = 0.1). This implies that contribution of the 
layer in stiffness is less than its contribution in mass. In the 
case when n > 0.2 the contribution in stiffness is less only 
for small thickness of bonded layer and it gets more than 
mass contribution from a value of the thickness that results 
in increasing natural frequency.          

5. Conclusion 

 In the present report, governing equations of FGM 
beam bonded by a piezoelectric layer have been derived 
on the base of Timoshenko beam theory, power law of 
material grading. The established equations have the form 
of single FGM beam with those coefficients added by the 
terms representing contribution of the piezoelectric layer. 
These equations are then solved to get 
frequency-dependent shape functions needed to develop 
the dynamic stiffness method for modal analysis of the 
double beam.  

The developed method has been employed to 
frequency analysis of an FGM beam with piezoelectric 
layer. The analysis shows that the piezoelectric layer does 
not modify the well-known properties of FGM beam even 
thickness of the layer reaches to thickness of the base 
beam. However, thickness of the piezoelectric layer 
makes a remarkable influence on natural frequencies of 
the bonded beam. Namely, thickness of piezoelectric 

layer increasing from zero to a level makes flexural 
frequencies decreased before they get monotonical 
increase, while the axial vibration frequencies are 
unaffected by increasing of the thickness. 

Next study of the authors is to investigate influence of 
piezoelectric layer on natural frequencies of cracked 
FGM beam. 
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